Variability of \(f_0 F_2 \) over Rome and Gibilmanna during three solar cycles (1976-2000)

M. Pietrella,1 M. Pezzopane,1 and C. Scotto1,2

Received 19 December 2011; revised 27 March 2012; accepted 29 March 2012; published 16 May 2012.

[1] Hourly validated values of the F2-layer critical frequency \((f_0 F_2) \) recorded at Rome, Italy (geographic coordinates 41.8°N, 12.5°E; geomagnetic coordinates 42.0°N, 93.8°E), and Gibilmanna, Italy (geographic coordinates 37.6°N, 14.0°E; geomagnetic coordinates 38.1°N, 93.6°E), along with the hourly quiet time reference values of \(f_0 F_2 \) \((f_0 F_{2QTRV}) \) were considered around periods of minimum and maximum solar activity over the years 1976–2000. The \(f_0 F_2 \) data set was specifically organized in order to obtain an overall trend both for low and high solar activity, and different dispersion indices were used. The results obtained show that (1) at Rome, the \(f_0 F_2 \) variability is always greater during periods of high solar activity (HSA) in the hourly ranges 00:00–02:00 UT and 20:00–23:00 UT during winter months, and in the hourly ranges 00:00–10:00 UT and 04:00–16:00 UT during equinoctial and summer months respectively; (2) on the whole, around midday, for low solar activity (LSA), the \(f_0 F_2 \) variability is smaller at the equinoxes than at the solstices; for HSA, it is greater at equinoxes than at solstices; (3) for LSA, at Gibilmanna the \(f_0 F_2 \) variability is in general larger than at Rome, especially in summer, and it is characterized by a number of relative minimums and maximums greater than those observed at Rome; (4) at Rome, for both LSA and HSA, the passage of solar terminator at sunset significantly affects ionospheric variability in January, April, August, and November, at Gibilmanna in August, September, and November; (5) several variability peaks before sunrise and after sunset are observed in both stations; (6) on a monthly basis, for both LSA and HSA, a semiannual variation of \(f_0 F_2 \) variability is observed at both Rome and Gibilmanna; and (7) evidence of ionospheric variability at the typical heights of the F region, connected to upward propagating gravity waves triggered by solar terminator, is observed at Rome during some days characterized by HSA in the equinoctial months.

1. Introduction

[2] Studies of ionospheric variability were carried out in the past using the hourly values of the critical frequencies and the corresponding observed monthly medians of the E region, and of the F1 and F2 ionospheric layers. At mid-latitudes it was found that, compared to the E region and the F1 layer, the F2 layer is by far the most variable \cite{Rush1973}. Therefore, unlike the monthly median values of \(f_0 E \) and \(f_0 F_1 \), the monthly median values of \(f_0 F_2 \) cannot adequately represent the day-to-day variability of the corresponding layer. As a consequence, median predictions of \(f_0 F_2 \) would be subject to day-to-day prediction errors in the order of 0.6 to 9.0 MHz when used for radio transmissions on a daily basis \cite{Rush1973}. From these results, and also considering that the F2 layer is by far the most important ionospheric layer for HF band radio communications, it emerges that F2-layer variability is of much greater importance than that of the E region and F1 layer. For these reasons, over the years many studies have focused on the F2 layer and its variability \cite[e.g.,][]{Elia1999, Jarvis2009, Rishbeth2009, Chen2010, Jarvis2011, Liu2011, Somoye2011, Triskova2011, Zolotukhina2011}.

[3] Several studies have now demonstrated that F2-layer variability occurs over a wide range of time scales, from hours to years, and depends basically on three different physical sources: solar flux changes, geomagnetic activity, and meteorological processes.

[4] The solar source seems to be much more important for \(f_0 F_2 \) month-to-month and year-to-year variability \cite[i.e., following the 11 year solar cycle]. Even though day-to-day variations of the F2-layer height are found to be well correlated with day-to-day variations in solar activity \cite{Rishbeth1993}, the ionospheric variability associated with day-to-day

1Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy.
2Also at Doctoral School in Polar Sciences, University of Siena, Siena, Italy.

Corresponding author: M. Pietrella, Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, Rome I-00143, Italy. (marco.pietrella@ingv.it)

Copyright 2012 by the American Geophysical Union.
0148-0227/12/2011JA017462
solar flux changes is estimated in terms of the normalized standard deviation to be about 3% and hence it is small when compared with that due to meteorological influences (18%) [Forbes et al., 2000].

[5] Very marked ionospheric variability is observed during significant disturbances affecting the Earth’s magnetic field and related to geomagnetic storms. In these cases, significant changes of the electron density can alter day-to-day F2-layer variability [e.g., Proß, 1995; Proß, 1997; Fuller-Rowell et al., 1997; Buonsanto, 1999].

[6] Equally important are the “meteorological effects,” i.e., those dynamic phenomena propagating from the lower atmosphere (such as atmospheric tides, internal gravity waves, planetary waves) up to ionospheric heights, and that are in part responsible for the ionospheric variability observed in the F2 layer [Kazimirovsky, 2002, and reference therein]. Other studies, aimed to determine which fraction of the observed F2-layer variability could be attributed to the different causes, showed that the meteorological sources are comparable with the geomagnetic sources [Rishbeth and Mendillo, 2001].

[7] Quantifying to what extent observed F2-layer variability is due to the various sources, is very important because this would permit a much more detailed understanding of the ionosphere. This knowledge would be fundamental for developing and improving statistical models of ionospheric variability valuable to assist HF operators in planning and maintaining efficient management of HF radio communications.

[8] In the past, the study of ionospheric variability was performed using different dispersion indices. The \(f_{oF2} \) monthly median values are usually considered as representative of a quiet state of the ionosphere [Cander and Mihajlovic, 1998], and for this reason some studies regarding ionospheric variability were conducted by analyzing the statistical distributions of dispersion indices based on the monthly median values [Kouris et al., 1998, 1999]. In addition to the monthly medians, the lower and upper deciles can also be regarded as a useful tool in providing a standard and statistical description of the ionosphere [Wilkinson, 2004]. The fractional decile deviations from the monthly medians for different seasons, geographical latitudes, and range of solar activity, were used to model day-to-day \(f_{oF2} \) and M(3000)F2 variations [Davis and Groome, 1964]. This statistical model of ionospheric variability was implemented by the International Communication Union (ITU) [ITU, 1997] to provide an estimation of diurnal MUF variability as a guideline for the choice of the maximum usable frequencies for use in radio communications.

[9] More recently, a day-to-day MUF variability has been investigated using decile factors calculated with data from more than a hundred ionospheric stations spread worldwide, and compared with those of the ITU, currently used by the international radio community [Fotiadis et al., 2004]. It should be noted that monthly medians and deciles have their limitations. In fact, it is not easy to define a parameter that accurately represents a “quiet” ionosphere. The \(f_{oF2} \) monthly median values give rise to many artificial effects [Kozin et al., 1995] and can be inadequate to describe a “quiet” ionosphere. Alternative quiet time reference values are required [Wrenn et al., 1987]. Moreover, Fox and Wilkinson [1988] found that while the decile factors were effective at times, they often significantly under- or over-estimate the observed variability.

[10] From these considerations, and in order to identify a dispersion index that is able to objectively quantify ionospheric variability, the authors deduced that it is of crucial importance to define the representative parameters of a “quiet” ionosphere.

[11] A tool for assessing dispersion of measurements over a given period is standard deviation. Due to natural fluctuations of the ionospheric reflector, \(f_{oF2} \) measurements vary. Many \(f_{oF2} \) measurements close to the average value indicate a very small variability and hence such measurements can be considered “representative” of a quiet period. Therefore, standard deviation seems to be appropriate to identify periods in which the observed variations of \(f_{oF2} \) are not significant. For these reasons, this parameter was widely used to investigate ionospheric variability [Forbes et al., 2000; Rishbeth and Mendillo, 2001; Bilitza et al., 2004; Akala et al., 2010].

[12] This work represents a further contribution to this approach, and describes a study of \(f_{oF2} \) variability over Rome, Italy (41.8°N, 12.5°E), and Gibilmana, Italy (37.6°N, 14.0°E), for low solar activity (LSA) and high solar activity (HSA) over three solar cycles. The coordinate written above place both stations within the meridian following the Greenwich meridian. With this in mind, even if this investigation was conducted using the hourly values of \(f_{oF2} \) taken in universal time (UT), the results acquired in this study can be thought in terms of local time (LT) adding one hour, being the relationship between UT and LT at both stations given by LT = UT + 1.

[13] Section 2 describes the data sets considered, and their corresponding organization. Section 3 defines the different dispersion indices considered in order to perform the analysis, and illustrates the related results, which are discussed in section 4. Concluding remarks and possible future developments are summarized in section 5.

2. Data Sets

[14] In order to perform the analysis described in this paper, two different data sets were considered. The first includes the \(f_{oF2} \) hourly validated values recorded at the ionospheric stations of Rome and Gibilmana over three solar cycles (January 1976 - December 2000). The second includes the hourly quiet time reference values \(f_{oF2^{ QUI R}} \), calculated for the same period of time, following the procedure proposed by Wrenn et al. [1987] and described in detail by Pietrella and Perrone [2008].

[15] With regard to the \(f_{oF2} \) validated values, they were interpreted according to the International Union of Radio Science (URSI) standard [Wakai et al., 1987], and all the corresponding numerical values were considered independently of the presence of qualifying and descriptive letters. These validated data were downloaded from the electronic Space Weather upper atmosphere database (eSWua; http://www.eswua.ingv.it/) [Romano et al., 2008].

[16] The procedure followed for the arrangement of both data sets consists of two fundamental steps: (1) The months of lowest and highest solar activity were identified for each of the three solar cycles considered (see Table 1), and (2) the six months prior and following each month identified in
step 1 were considered, and consequently six groups of 13 months, three for LSA and three for HSA, were formed (see Table 2).

[17] As in the case of HSA solar cycle 23 has a much lower maximum solar index (R12 around 120) than the solar cycles 21 and 22 that present very close maximum solar indices (R12 around 160), the hourly mean values of $f_o F_2$ were calculated for each solar cycle considering the months characterized by HSA (Table 2) and then plotted to have a confirmation of the F2 layer saturation effect. As can be seen in Figure 2, $f_o F_2$ values from solar cycle 23 are not much different from those of solar cycle 21 and 22, except for January, February, October, November, and December that present significantly lower values than those of the solar cycle 21 and 22. This means that the saturation effect for these months is not verified; that is why these months (footnoted in Table 2) were excluded from the analysis concerning HSA data set.

[18] With regard to Gibilmanna, only data for LSA were considered because of an important lack of HSA data.

[19] Given the data set arrangement shown in Table 2, the $f_o F_2$ hourly validated values for a given month were grouped to obtain two different data sets: one for LSA and the other for HSA. These two data sets were then binned in terms of single hour, so that each bin includes hourly time series of $f_o F_2$, one for LSA and the other one for HSA. At the end of this procedure, 24 data sets for each month both for LSA and HSA were created (see Figure 1).

[20] Similarly, 24 data sets for LSA and 24 data sets for HSA were obtained for each month by taking into account the corresponding $f_o F_{2QTRV}$ hourly values.

Table 1. Months of Lowest and Highest Solar Activity for Solar Cycles 21, 22, and 23, With Corresponding Value of the Solar Index R_{12}

<table>
<thead>
<tr>
<th>Solar cycle 21</th>
<th>Lowest Solar Activity</th>
<th>Highest Solar Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 1976 (R12 = 12.2)</td>
<td>Dec 1979 (R12 = 164.5)</td>
<td></td>
</tr>
<tr>
<td>Sep 1986 (R12 = 12.3)</td>
<td>Jul 1989 (R12 = 158.5)</td>
<td></td>
</tr>
<tr>
<td>May 1996 (R12 = 8.0)</td>
<td>Apr 2000 (R12 = 120.8)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Six Groups of 13 months, Three for Low Solar Activity and Three for High Solar Activity, Each of Which Is Centered on the Corresponding Month of Lowest and Highest Solar Activity Shown in Table 1

<table>
<thead>
<tr>
<th>Low Solar Activity</th>
<th>High Solar Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Group 2</td>
</tr>
</tbody>
</table>

*Months that were excluded from the analysis because the saturation effect is not proved.

Figure 1. Scheme illustrating the procedure by which, according to the grouping shown by Table 2, 24 data sets are created for both low solar activity (LSA) and high solar activity (HSA) for each month considered (the figure refers to May).
From each hourly data set generated following the procedure just described, the hourly mean of f_0F_2 were calculated. Figure 3 shows the diurnal plots of the f_0F_2 mean values on monthly scales at Rome in case of HSA and at Rome and Gibilmanna for LSA.

3. Dispersion Indices and Results

Based on the two different data sets introduced in section 2 and on the corresponding organization, two different dispersion indices, for a given month and hour, were calculated. The first is

$$\sigma_{f_0F_2}(\text{month, hour}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (f_0F_2(\text{year, month, day, hour})_i - \overline{f_0F_2(\text{month, hour})})^2},$$

where

$$\overline{f_0F_2(\text{month, hour})} = \frac{\sum_{i=1}^{N} f_0F_2(\text{year, month, day, hour})_i}{N},$$

$f_0F_2(\text{year, month, day, hour})_i$ is the hourly validated value for a given year, month, day and hour, and N represents the number of days for which an f_0F_2 hourly validated value is available for that month and hour (for example, referring to the May–HSA data set of Figure 1, if all the data were available N would be equal to 93). The second is

$$\sigma_{foF_2_{QTRV}}(\text{month, hour}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (f_0F_2(\text{year, month, day, hour})_i - f_0F_{2,GTV}(\text{year, month, day, hour}))^2},$$

Figure 2. Hourly mean values of f_0F_2 calculated for those months characterized by HSA (according to Table 2), for solar cycle 21 (black dots), 22 (red dots), and 23 (green dots).
where $f_{oF_2}^{2QTRV}(\text{year, month, day, hour})$ is the quiet time reference value calculated at the same epoch of the considered hourly validated value. Hence, 24 hourly values were calculated for each month for both equations (1) and (2).

Equation (1) represents the absolute standard deviation based on the f_{oF_2} hourly validated values and the corresponding average, while equation (2) is a new dispersion index introduced by comparing the f_{oF_2} hourly validated values with the corresponding $f_{oF_2}^{2QTRV}$ values calculated at the same epochs, according to the procedure described by Pietrella and Perrone [2008]. The diurnal trends of the ionospheric variability at Rome and Gibilmanna expressed by the dispersion indices (1) and (2) are shown in Figure 4 and Figure 5 respectively, for each month, for LSA for both stations, and for HSA only for Rome.

In order to investigate f_{oF_2} variability on a monthly basis, the following monthly averages

$$
\sigma_{f_{oF_2}}(\text{month}) = \frac{\sum_{\text{hour}=0}^{23} \sigma_{f_{oF_2}}(\text{month, hour})}{24},
$$

and

$$
\sigma_{f_{oF_2}^{2QTRV}}(\text{month}) = \frac{\sum_{\text{hour}=0}^{23} \sigma_{f_{oF_2}^{2QTRV}}(\text{month, hour})}{24},
$$

of the 24 corresponding hourly values of equations (1) and (2) were calculated, respectively. Figure 6 shows the trend of equations (3) and (4) for LSA, at Rome and at Gibilmanna, and for HSA at Rome.

In order to widen this investigation, according to Bilitza et al. [2004] and Akala et al. [2010], the following relative standard deviation ($\sigma_{r.s.d.}$) was also calculated:

$$
\sigma_{r.s.d.}(\text{month, hour})[\%] = \frac{\sigma_{f_{oF_2}^{2QTRV}}(\text{month, hour})}{f_{oF_2}(\text{month, hour})} \times 100
$$

In addition, starting from the relative standard deviation, the following monthly averages were calculated:

$$
\bar{\sigma}_{r.s.d.}(\text{month})[\%] = \frac{\sum_{\text{hour}=0}^{23} \sigma_{r.s.d.}(\text{month, hour})[\%]}{24}
$$
and a new index, similar to those defined in equations (3) and (4), was defined to explore again $f_{o}F_{2}$ variability on a monthly basis.

[26] Figure 7 and Figure 8 depict, for each month, the diurnal plots of the ionospheric variability at Rome and Gibilmanna expressed by the dispersion indices (5) and (6) respectively, for LSA for both stations, and for HSA only for Rome.

[27] In order to look for further additional features characterizing $f_{o}F_{2}$ variability, the following indices were also introduced:

$$\delta_{f_{o}F_{2}}(\text{year, month, day, hour}) = \frac{f_{o}F_{2}^{(\text{year, month, day, hour})} - \overline{f_{o}F_{2}}^{(\text{year, month, hour})}}{\overline{f_{o}F_{2}}^{\text{QTRV}}(\text{year, month, day, hour})}$$

where

$$\overline{f_{o}F_{2}}(\text{year, month, hour}) = \frac{\sum_{i=1}^{n} f_{o}F_{2}(\text{year, month, day, hour})}{n},$$

and n represents the number of days for which an $f_{o}F_{2}$ hourly validated value is available for that year, month and hour, and

$$\delta_{f_{o}F_{2}^{\text{QTRV}}}(\text{year, month, day, hour}) = \frac{f_{o}F_{2}^{(\text{year, month, day, hour})} - f_{o}F_{2}^{2}(\text{year, month, day, hour})}{f_{o}F_{2}^{2 \text{QTRV}}(\text{year, month, day, hour})}$$

(7) The daily trends according to equations (7) and (8) obtained for Rome, for LSA in 1996, and for HSA in

Figure 4. Diurnal trends of ionospheric variability expressed by the absolute standard deviation (1) for each month, for LSA at Rome (blue curve) and at Gibilmanna (green curve) and for HSA at Rome (red curve).
1989 and 2000, are shown respectively in Figure 9, Figure 10, and Figure 11.

4. Discussion

[28] Figure 3 shows the diurnal plots of the mean values of $f_{o}F_2$ on monthly scale for HSA (Rome), and LSA (Rome and Gibilmanna). All the plots are characterized by the same diurnal features: high mean values of $f_{o}F_2$ during the daytime, with a typical maximum around midday, and low mean values during the nighttime. In particular, a post midnight minimum is observed at 05:00 UT, 04:00 UT, and 03:00 UT in winter, equinoctial and summer months respectively. The maximum around midday clearly emerges in winter and equinoctial months, but is less distinguishable in summer months where a post midnight maximum is detected at 18:00 UT. In case of LSA very similar trends are found for all the months.

[29] In order to provide an overall depiction of $f_{o}F_2$ variability in terms of high and low solar activity, the data were organized in a particular way, as shown in section 2. Moreover, besides taking into account the absolute standard deviation (equation (1)), this work also defined a new dispersion index (equation (2)) based on the $f_{o}F_{2QTRV}$ values. The trends shown by Figure 4 and Figure 5 clearly highlight that these two indices provide a very similar depiction of ionospheric variability, and hence they can be considered equivalent. Nevertheless, it should be noted that the index (2) derives from the direct comparison of each $f_{o}F_2$ measurement validated at a given epoch with the corresponding $f_{o}F_{2QTRV}$ value calculated at the same epoch, according to the procedure described by Pietrella and Perrone [2008]. With regard to these $f_{o}F_{2QTRV}$ values, Pietrella and Perrone [2008] demonstrated their reliability by testing their behavior under disturbed ionospheric conditions. For this reason, even though the two indices provide results quantitatively comparable, the authors suggest that to some extent the index (2) can be considered as more reliable than the absolute standard deviation (1).
Figure 4 and Figure 5 show that at Rome ionospheric variability is always greater for HSA, which agrees with the findings of Rush and Gibbs [1973], who established that at midlatitudes the absolute standard deviation is larger at solar maximum than at solar minimum.

The visual inspection of Figure 4 and 7 shows that absolute and relative standard deviation provide different results. The f_0F_2 variation in terms of solar activity and time of the day fully explains the results of Figure 4. On the other hand, the diurnal variation of f_0F_2, higher at midday than at night, determines a higher percentage ionospheric variability during nighttime (Figure 7) when smaller mean f_0F_2 values are considered. Anyway, the absolute and relative standard deviation provide to some extent the same results. Indeed, a greater ionospheric variability for HSA, but only for certain hours, emerges also from a meticulous analysis of the plot concerning the relative standard deviation; by and large, at Rome, percentage ionospheric variability is in fact always greater for HSA in the hourly ranges 00:00–02:00 UT and 20:00–23:00 UT in winter months, and in the hourly ranges 00:00–10:00 UT and 04:00–16:00 UT in equinoctial and summer months respectively (see red and blue plots of Figure 7).

On the contrary, percentage ionospheric variability is always greater for LSA in the hourly ranges 08:00–16:00 UT and 15:00–21:00 UT in winter and equinoctial months respectively, and in the hourly ranges 00:00–03:00 UT and 17:00–23:00 UT during summer months. These results agree with the outcome of several low latitude investigations [Bilitza et al., 2004; Ezquer et al., 2004; Akala et al., 2010] where it is shown that ionospheric variability increases as solar activity decreases.

From the hourly values of the absolute and relative standard deviation averaged over 5 h from 09:00 to 13:00 UT (not here shown), emerges that for LSA, ionospheric variability is smaller at the equinoxes than at the solstices. On the contrary, for HSA, the variability is on the whole greater at the equinoxes than at the solstices, confirming the findings of Rishbeth and Mendillo [2001] and Ezquer et al. [2004]. In addition, this seasonal feature does not show any particular asymmetry, which matches the observation of Liu et al. [2010], who said that the equinoctial asymmetry in ionospheric plasma density is mainly a low-latitude phenomenon, mostly during LSA. Moreover, the inspection of the absolute and relative standard deviation values around midday provides the same following results: At Rome...
ionospheric variability is smaller in case of LSA during summer months; at Gibilmanna ionospheric variability is greater than that in Rome during winter and summer months, and slightly smaller during equinoctial months.

From Figure 4 and Figure 5 it also emerges that for LSA, the variability at Gibilmanna is characterized by a number of relative minimums and maximums greater than those observed at Rome. Although less evident, this feature is also deduced analyzing the trends of the relative standard deviation (see blue and green plots of Figure 7).

Moreover, while a month to month comparison between the diurnal trends of Rome and Gibilmanna does not indicate any particularly noteworthy features in the equinoctial (March, April, September, and October) and winter months (January, February, November, and December), a clearly greater variability during summer months (May, June, July, and August) is observed at Gibilmanna. These results find a confirmation from the examination of the diurnal trends of ionospheric variability expressed by the dispersion index (5).

In fact analyzing meticulously the plots of the relative standard deviation for LSA at Rome and Gibilmanna (blue and green plots of Figure 7), an ionospheric variability greater at Gibilmanna during summer months is generally found in the hourly ranges 00:00–04:00 UT, 06:00–16:00 UT, and 19:00–23:00 UT.

Therefore, it can be argued that Gibilmanna, especially in summer, is more susceptible to variability, with its lower latitude resulting in an ionosphere affected by more numerous dynamic processes.

By and large, the diurnal trends of ionospheric variability obtained for Rome and Gibilmanna (Figures 4, 5, and 7) show the presence of peaks around both sunrise and sunset, probably due to a sudden electron density increase/decrease caused by the turning-on/turning-off of ionizing solar radiation. To verify whether the observed maximums of variability around sunrise/sunset are due to the passage of

Figure 7. Diurnal trends of ionospheric variability expressed by the relative standard deviation (5) for each month, for LSA at Rome (blue curve) and at Gibilmanna (green curve) and for HSA at Rome (red curve).
solar terminator, the hourly ranges in which sunrise and sunset occur were calculated for each month at Rome and Gibilmanna taking as reference the year 2011 (see Table 3). The hours which “fall” inside the hourly range delimiting the sunrise/sunset sector, and the number of times (in brackets) for which $f_s F_2$ measurements occur during nighttime (N_{night}) and during daytime (N_{day}) are also reported in Table 3 for each month.

Ionospheric variability should be mostly affected by the passage of solar terminator when N_{night} and N_{day} are comparable and not in case of $N_{\text{night}} \ll N_{\text{day}}$ or $N_{\text{day}} \ll N_{\text{night}}$. The footnoted entries in Table 3 marks the cases for which the passage of solar terminator is expected to affect significantly ionospheric variability under the assumption that is at least $N_{\text{night}} \geq 6$ and $N_{\text{day}} \geq 6$. To establish whether the peaks of variability observed both with absolute and

Figure 8. Trend according to (6) at Rome for (a) HSA, (b) LSA, and (c) at Gibilmanna for LSA. Error bar of each value is the maximum semidispersion.
relative standard deviation are due to the passage of solar terminator in the sense described above, a very meticulous analysis was performed to verify whether each peak hour “fell” inside the hourly intervals delimiting the sunrise and sunset hours (Table 3). From this investigation emerges that only in a few cases, and for LSA, the observed peaks can be directly linked to the passage of solar terminator: at Rome, in August at sunset (18:00 UT, see Figures 4, 5, and 7), and in

![Figure 9](image)

Figure 9. Daily trends obtained for Rome, for LSA (year 1996), according to the index defined by (a) equation (7) and by (b) equation (8). Red and green indicate positive and negative deviations, respectively. Dark zones indicate values of the indices equal or close to zero. Violet indicates that data were not available.

![Figure 10](image)

Figure 10. Same as Figure 9 but for HSA (year 1989). Light blue rectangles highlight zones where ionospheric variability is very low.
November again at sunset (16:00 UT, see Figures 4 and 5); at Gibilmanna, in February at sunrise (06:00 UT, see Figures 4 and 5); and November at sunset (16:00 UT, see Figures 4, 5, and 7). This feature agrees with other studies [e.g., Bilitza et al., 2004; Akala et al., 2010], which have shown the presence of peaks at sunrise and sunset clearly emerging from the diurnal trend.

A more accurate investigation about the hours which are inside the sunrise/sunset sector (see Table 3), shows that in Rome, for HSA, ionospheric variability at these hours can

<table>
<thead>
<tr>
<th>Year</th>
<th>Sunrise (UT)</th>
<th>Sunset (UT)</th>
<th>Daytime f_{F}2 Measurements (UT)</th>
<th>Nighttime f_{F}2 Measurements (UT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>06:38–06:24</td>
<td>15:49–16:22</td>
<td>16:00 (19)</td>
<td>16:00 (12)b</td>
</tr>
<tr>
<td>Feb</td>
<td>06:23–05:48</td>
<td>16:24–16:58</td>
<td>06:00 (9)</td>
<td>06:00 (19)b</td>
</tr>
<tr>
<td>Mar</td>
<td>05:46–04:56</td>
<td>16:59–17:33</td>
<td>05:00 (3), 17:00 (30)</td>
<td>05:00 (28), 17:00 (1)</td>
</tr>
<tr>
<td>Apr</td>
<td>04:54–04:09</td>
<td>17:34–18:06</td>
<td>18:00 (7)</td>
<td>18:00 (23)b</td>
</tr>
<tr>
<td>May</td>
<td>04:07–03:38</td>
<td>18:07–18:37</td>
<td>04:00 (25)</td>
<td>04:00 (6)b</td>
</tr>
<tr>
<td>Jun</td>
<td>03:38–03:38</td>
<td>18:38–18:49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td>03:38–04:02</td>
<td>18:49–18:31</td>
<td>04:00 (29)</td>
<td>04:00 (2)</td>
</tr>
<tr>
<td>Aug</td>
<td>04:03–04:34</td>
<td>18:30–17:47</td>
<td>18:00 (22)</td>
<td>18:00 (9)b</td>
</tr>
<tr>
<td>Sep</td>
<td>04:35–05:05</td>
<td>17:46–16:56</td>
<td>05:00 (25), 17:00 (27)</td>
<td>05:00 (5), 17:00 (3)</td>
</tr>
<tr>
<td>Oct</td>
<td>05:06–05:40</td>
<td>16:54–16:07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>05:42–06:16</td>
<td>16:06–15:41</td>
<td>06:00 (16), 16:00 (6)</td>
<td>06:00 (14), 16:00 (24)b</td>
</tr>
<tr>
<td>Dec</td>
<td>06:17–06:38</td>
<td>15:40–15:48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gibilmanna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>06:23–06:13</td>
<td>15:57–16:28</td>
<td>16:00 (26)</td>
<td>16:00 (5)</td>
</tr>
<tr>
<td>Feb</td>
<td>06:12–05:41</td>
<td>16:29–16:58</td>
<td>06:00 (16)</td>
<td>06:00 (12)b</td>
</tr>
<tr>
<td>Mar</td>
<td>05:46–04:54</td>
<td>16:59–17:28</td>
<td>05:00 (3), 17:00 (30)</td>
<td>05:00 (28), 17:00 (1)</td>
</tr>
<tr>
<td>Apr</td>
<td>04:52–04:12</td>
<td>17:29–17:56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>04:11–03:46</td>
<td>17:57–18:23</td>
<td>04:00 (21), 18:00 (27)</td>
<td>04:00 (10)b, 18:00 (4)</td>
</tr>
<tr>
<td>Jun</td>
<td>03:45–03:47</td>
<td>18:24–18:34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td>03:47–04:08</td>
<td>18:34–18:17</td>
<td>04:00 (22)</td>
<td>04:00 (9)b</td>
</tr>
<tr>
<td>Aug</td>
<td>04:09–04:35</td>
<td>18:16–17:38</td>
<td>18:00 (15)</td>
<td>18:00 (16)b</td>
</tr>
<tr>
<td>Sep</td>
<td>04:36–05:01</td>
<td>17:37–16:52</td>
<td>05:00 (28), 17:00 (24)</td>
<td>05:00 (2), 17:00 (6)b</td>
</tr>
<tr>
<td>Oct</td>
<td>05:02–05:31</td>
<td>16:50–16:09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>05:32–06:03</td>
<td>16:08–15:47</td>
<td>06:00 (26), 16:00 (8)</td>
<td>06:00 (4), 16:00 (22)b</td>
</tr>
<tr>
<td>Dec</td>
<td>06:04–06:23</td>
<td>15:47–15:56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aSecond and third columns show the time intervals defining the hours of sunrise and sunset for Rome and Gibilmanna. Fourth and fifth columns specify the hours which “fall” inside the sunrise or sunset zone. Shown in parentheses are the number of times in which f_{F}2 measurements occur during nighttime and daytime for the considered month.

bCases for which solar terminator is expected to affect mostly the ionospheric variability.
be, however, considered relatively high and therefore imputable to the passage of solar terminator, at sunrise for the months of February and May and at sunset for the months of January, April, August, and November. For LSA in Rome, the passage of solar terminator affects significantly ionospheric variability at sunset for the months of January, April, August, and November (for these two last months a peak of variability is also observed). At Gibilmanna the ionospheric variability is appreciably influenced by the solar terminator at sunset for the months of August, September, and November (where a peak of variability is also observed). These results confirm that relatively high values of ionospheric variability are observed actually in almost all cases (see footnoted entries in Table 3) for which the passage of solar terminator is expected to influence significantly ionospheric variability. At Rome, for June, October, and December, and at Gibilmanna, for April, June, October, and December, ionospheric variability is not imputable to the passage of solar terminator because f_2 measurements do not occur during the passage of solar terminator but they are acquired always or before/after sunrise or before/after sunset. It is worth noting that for these months, in the transition from night to day, ionospheric variability described with the relative standard deviation, shows a more sharp decrease for LSA. From a careful comparison between Figures 4 and 7, it comes out that for many cases the variability peaks do not clearly emerge from the diurnal trends depicted in Figure 4. This because absolute standard deviation is used instead of normalized standard deviation [Bilitza et al., 2004; Akala et al., 2010], which has the effect of highlighting day-to-night differences. In fact, when the relative standard deviation is employed several variability peaks, especially before sunrise, and not observed with the absolute standard deviation, are highlighted for almost all months. Moreover, some maxima observed with the absolute standard deviation, but not with the relative standard deviation, occur mainly in the post sunset hours and in a larger extent for LSA. In particular, for LSA, the relative standard deviation better highlights the variability peaks already observed with the absolute standard deviation.

[41] As shown by Figure 6, on a monthly basis, f_2 variability described by (3) and (4) shows a well defined pseudo-wave pattern. This pattern is in general less evident when the variability on a monthly basis is described by equation (6), nevertheless, comparing Figure 6a with Figure 8a, a very similar trend is observed from June to October with a sharp maximum in September that is better highlighted using equation (6) (see Figure 8a). Moreover, a peak in May and in September can be observed comparing Figure 6c and Figure 8c. At Gibilmanna the comparison between Figure 6e and Figure 8e shows a very similar trend from June to October with a sharp maximum in May that again emerges more clearly using equation (6). Although the behavior of ionospheric variability on a monthly basis shows some important common features when it is investigated by equations (3), (4), and (6), the dispersion indices (3) and (4) seem to be more effective in emphasizing a pseudo-wave pattern. In particular, when the dispersion indices (3) and (4) are used a semi-annual variation is clearly observed, with maxima occurring in the equinoctial months, this being more pronounced for HSA and by taking the index (2) into account (see Figure 6b). These results confirm those of Williams et al. [2006, and 2009] who, by analyzing N_mF_2 variability at different midlatitude stations by means of absolute standard deviation, discovered a semi-annual variability with pronounced daytime equinoctial peaks. The semi-annual variation characterizing the f_2 variability observed at Rome and Gibilmanna could be correlated with the semi-annual geomagnetic activity pattern discussed by Joselyn [1995]. In particular, the appearance of maxima during the equinoctial months could be explained considering that, on average, enhancements of the interplanetary magnetic field’s southward component connecting to the geomagnetic field occur mainly near the equinoxes [Russell and McPherron, 1973].

[42] From a different perspective, these equinoctial peaks are explained as the effect of the coupling between the interplanetary magnetic field and the geomagnetic field being less effective at the solstices [Cliver et al., 2000].

[43] The maps represented in Figures 9–11 show as the dispersion indices defined by equations (7) and (8) differ throughout the 24 h for each day of a given month. Violet sectors indicate that data were not available, red and green sectors indicate respectively positive and negative values of the indices, which means an ionospheric variability higher and lower than the mean level; dark sectors indicate that the variability with respect to the mean level is nearly null and therefore they point out the epochs in which the ionospheric plasma can be considered quiet.

[44] Analyzing carefully the contours diagrams shown in Figures 9–11, it can be seen that there is an evident difference between those obtained for LSA and those obtained for HSA. For LSA, the contour diagrams calculated according to the two delta indices (7) and (8) are reasonably similar and do not show any significant pattern. On the contrary, for HSA it emerges that at some epochs the two delta indices (7) and (8) depict f_2 variability in a very different way, as it is evident for September 1989 in Figure 10a and Figure 10b. On the other hand, at other epochs, the two indices provide a very similar description of f_2 variability. Moreover, from the HSA contour diagrams shown in Figure 10 and Figure 11, it can happen that around the equinoxes (see February, March, and October 1989 in Figure 10, and March 2000 in Figure 11), a relatively long sequence of days is characterized by a quiet ionosphere during the daytime (the dark zones highlighted by light blue rectangles in Figure 10 and Figure 11) and by marked variability during postsunset and nighttime hours. Even though these features need to be more deeply investigated, two mechanisms have been proposed. According to the first [e.g., Laštovička, 2006, and reference therein], the nighttime variability is due to upward propagating gravity waves (GWs), whose period ranges from tens of minutes to a few hours, from the lower atmosphere to the E and F ionospheric regions. Another explanation suggests that there are GWs of auroral origin, as there is a direct relationship between a source in the auroral zone and a wave observed at midlatitudes [Williams et al., 1988]. This explanation is also supported by the work of many authors who observed a correlation between nighttime GWs and high values of the magnetic activity index $K_p (K_p > 3)$ [e.g., MacDougall et al., 2009]. Besides these mechanisms, the main in situ source of GWs is the transition of solar terminator [Somsikov, 1995]. The rapid increase/decrease of solar radiation at sunrise/sunset can act as a source of
atmospheric irregularities and generate GWs in the F region [Somsikov and Ganguly, 1995], although the evening terminator transition excites less regular and weaker GW effects [Altadill et al., 2004]. By analyzing rapid sequences of ionosonde measurements, the signature of GW propagation in the F region was also inferred during nighttime by Boška and Laštovicka [1996]. Moreover, GW signatures were also found in the lower ionosphere by analyzing nighttime measurements of low frequency radio wave absorption [Lastovicka et al., 1993]. Therefore, in the light of these studies, the variability of \(f_{o}F_2 \) observed during postsunset nighttime hours in the equinoctial months of February, March, and October 1989, and March 2000, could be explained in terms of overlapping GWs of auroral origin and GWs propagating from the lower atmosphere to the upper ionosphere, triggered by the sunset solar terminator. In order to highlight more clearly the gravity wave pattern behavior, a further analysis was performed taking into account the nighttime ionograms recorded in March 2000 by the Digisonde [Bibl and Reinisch, 1978] installed at Rome. From these ionograms, the vertical electron density profiles given as output by Automatic Real-Time Ionogram Scaler With True Height analysis (ARTIST) [Reinisch and Huang, 1983] were analyzed. From the profiles \((N, h) \), where \(N \) is the electron density and \(h \) is the real height of reflection, isoheight curves \(N(h = \text{const} = 230, 240, 250, 260, 270, 280, 290, 300, 310, 320 \text{ km}) \) were calculated. Figure 12 shows that isoheight curves relative to five nights of March 2000, that are included in the blue rectangles marked in Figure 11, present maximum \(N \) variations occurring first at 320 km and then at lower heights, showing a downward phase shift which is characteristic of GW propagation at the typical heights of the ionospheric F1 and F2 layers [Hines, 1960]. Therefore these results demonstrate the presence of traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation, and support the hypothesis of GWs propagating from the lower atmosphere assumed on the basis of the results shown in Figures 9–11.

5. Summary

[45] This paper described a preliminary study of \(f_{o}F_2 \) variability over Rome and Gibilmanna, Italy, for LSA and HSA. In order to perform the analysis, two different kinds of \(f_{o}F_2 \) data sets, and different dispersion indices were considered to highlight diverse aspects characterizing ionospheric variability. Both absolute and relative standard deviation, as well as the dispersion index based on the quiet time reference values of \(f_{o}F_2 \), put in evidence a greater ionospheric variability for HSA at Rome limitedly to certain hours: 00:00–02:00 UT and 20:00–23:00 UT in winter months, 00:00–10:00 UT in equinoctial months, and 04:00–16:00 UT in summer months. The absolute and relative standard deviation results, analyzed around midday (09:00–13:00 UT), provide essentially the same following outcomes: at Rome ionospheric variability is

Figure 12. Electron density variations for the real height range 230–320 km computed for 5 days of March 2000 from 20:00 to 04:00 UT. Oblique line highlights the downward phase shift typical of gravity wave propagation.
smaller in case of LSA during summer months; at Gibillmann ionospheric variability is greater than that in Rome during winter and summer months, and a little smaller during equinoctial months. Always, moreover around midday, for LSA, the fF2 variability is smaller at the equinoxes than at the solstices, while for HSA, it is greater at equinoxes than at solstices. Again, from absolute and relative standard deviation, as well as from the dispersion index based on the quiet time reference values of fF2, it was deduced that for LSA, at Gibillmann the fF2 variability is in general larger than at Rome, especially in summer, and characterized by a number of relative minimums and maximums greater than those observed at Rome. Therefore, it can be argued that Gibillmann, especially in summer, is more inclined to variability, with its lower latitudinal minimums and maximums greater than those observed at Rome. This is especially true during the summer months.

On the other side, the absolute standard deviation is able to highlight some maximums (not observed with relative standard deviation) mostly in the post-sunset hours. The abrupt changes of fF2 variability from daytime to nighttime conditions observed for HSA in some days of the equinoctial months seem to be related to upward propagating gravity waves triggered by solar terminator.

On the whole, the results obtained agree with those of previous studies. However, some peculiar features emerged, the causes of which are not altogether clear. With the aim of estimating the relative solar, geomagnetic, and meteorological contribution to F2-layer variability, further studies considering quiet and disturbed geomagnetic conditions separately are planned. Besides providing a better understanding of ionospheric variability, these studies could be helpful for developing a corresponding statistical model, which would be valuable when scheduling frequencies for HF services.

Acknowledgments. Robert Lysak thanks the reviewers for their assistance in evaluating this paper.

References

References

